您好,欢迎访问江苏省农业科学院 机构知识库!

OsZIP11 is a trans-Golgi-residing transporter required for rice iron accumulation and development

文献类型: 外文期刊

作者: Zhao, Ya Ning 1 ; Li, Chao 1 ; Li, He 1 ; Liu, Xue Song 2 ; Yang, Zhi Min 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Life Sci, Dept Biochem & Mol Biol, Nanjing 210095, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Agr Facil & Equipment, Nanjing 210014, Jiangsu, Peoples R China

关键词: Iron; Metal Transporter; Rice; Seed Development; ZIP11

期刊名称:GENE ( 影响因子:3.913; 五年影响因子:3.48 )

ISSN: 0378-1119

年卷期: 2022 年 836 卷

页码:

收录情况: SCI

摘要: Iron (Fe) is a mineral nutrient necessary for plant growth and development. Whether the rice ZRT/IRT-like protein family metal transporter OsZIP11 is involved in Fe transport has not been functionally defined. The objective of the study is to figure out the essential role of the uncharacterized OsZIP11 played in rice growth, development, and iron accumulation, particularly in seeds. Transient subcellular location assays show that OsZIP11 was targeted to the trans-Golgi network. OsZIP11 was preferentially expressed in the rice tissues (or organs) at later flowering and seed development stages. Transcripts of OsZIP11 were significantly induced under Fe but not under zinc (Zn), copper (Cu) or manganese (Mn) deficiency. Yeast (Saccharomyces cerevisiae) transformed with OsZIP11 sequences displayed an active iron input which turned out that excessive iron accumulated in the cells. Knocking out OsZIP11 by CRISPR-Cas9 approach led to the attenuated rice growth and physiological phenotypes, depicting shorter plant height, reduced biomass, chlorosis (a symptom of lower chlorophyll concentration), and over-accumulation of malondialdehyde (complex representing the peroxidation of membrane lipids) in rice plantlets. The field trials demonstrated that OsZIP11 mutation impaired the capacity of seed development, with shortened panicle and seed length, compromised spikelet fertility, and reduced grain per plant or 1000-grain weight. Knocking out OsZIP11 also lowered the accumulation of iron in the brown rice by 48-51% compared to the wild-type. Our work pointed out that OsZIP11 is required for iron acquisition for rice growth and development.

  • 相关文献
作者其他论文 更多>>