您好,欢迎访问吉林省农业科学院 机构知识库!

Lytic Bacteriophage PZL-Ah152 as Biocontrol Measures Against Lethal Aeromonas hydrophila Without Distorting Gut Microbiota

文献类型: 外文期刊

作者: Feng, Chao 1 ; Jia, Kaixiang 1 ; Chi, Teng 1 ; Chen, Shuaimin 2 ; Yu, Huabo 1 ; Zhang, Liang 1 ; Haidar Abbas Raza, Sayed 3 ; Alshammari, Ahmed Mohajja 4 ; Liang, Shuang 1 ; Zhu, Zishan 1 ; Li, Tingxuan 1 ; Qi, Yanling 1 ; Shan, Xiaofeng 1 ; Qian, Aidong 1 ; Zhang, Dongxing 1 ; Zhang, Lei 1 ; Sun, Wuwen 1 ;

作者机构: 1.Jilin Agr Univ, Coll Anim Sci & Technol, Jilin, Peoples R China

2.Jilin Acad Agr Sci, Inst Agr Resources & Environm, Changchun, Peoples R China

3.Northwest A&F Univ, Coll Anim Sci & Technol, Xianyang, Peoples R China

4.Univ Hail, Coll Sci, Dept Biol, Hail, Saudi Arabia

关键词: Aeromonas hydrophila; phage therapy; phage genome; phage safety; gut microbiota

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:6.064; 五年影响因子:6.843 )

ISSN:

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: Phage therapy is an alternative approach to overcome the problem of multidrug resistance in bacteria. In this study, a bacteriophage named PZL-Ah152, which infects Aeromonas hydrophila, was isolated from sewage, and its biological characteristics and genome were studied. The genome contained 54 putative coding sequences and lacked known putative virulence factors, so it could be applied to phage therapy. Therefore, we performed a study to (i) investigate the efficacy of PZL-Ah152 in reducing the abundance of pathogenic A. hydrophila strain 152 in experimentally infected crucian carps, (ii) evaluate the safety of 12 consecutive days of intraperitoneal phage injection in crucian carps, and (iii) determine how bacteriophages impact the normal gut microbiota. The in vivo and in vitro results indicated that the phage could effectively eliminate A. hydrophila. Administering PZL-Ah152 (2 x 10(9) PFU) could effectively protect the fish (2 x 10(8) CFU/carp). Furthermore, a 12-day consecutive injection of PZL-Ah152 did not cause significant adverse effects in the main organs of the treated animals. We also found that members of the genus Aeromonas could enter and colonize the gut. The phage PZL-Ah152 reduced the number of colonies of the genus Aeromonas. However, no significant changes were observed in alpha-diversity and beta-diversity parameters, which suggested that the consumed phage had little effect on the gut microbiota. All the results illustrated that PZL-Ah152 could be a new therapeutic method for infections caused by A. hydrophila.

  • 相关文献
作者其他论文 更多>>