您好,欢迎访问河南省农业科学院 机构知识库!

Molecular mapping of quantitative trait loci for 3 husk traits using genotyping by sequencing in maize (Zea mays L.)

文献类型: 外文期刊

作者: Zhang, Jun 1 ; Zhang, Fengqi 1 ; Tian, Lei 2 ; Ding, Yong 1 ; Qi, Jianshuang 1 ; Zhang, Hongfeng 2 ; Mu, Xinyuan 1 ; Ma, Zhiyan 1 ; Xia, Laikun 1 ; Tang, Baojun 1 ;

作者机构: 1.Henan Acad Agr Sci, Cereal Crops Res Inst, Henan Prov Key Lab Maize Biol, Zhengzhou 450003, Peoples R China

2.Henan Inst Sci & Technol Dev, Zhengzhou 450003, Peoples R China

3.Henan Agr Univ, Coll Agron, Ctr Crop Genome Engn, State Key Lab Wheat & Maize Crop Sci, Zhengzhou 450046, Peoples R China

关键词: maize; husk traits; genotyping by sequencing; quantitative trait locus; single-nucleotide polymorphism

期刊名称:G3-GENES GENOMES GENETICS ( 影响因子:3.542; 五年影响因子:3.545 )

ISSN: 2160-1836

年卷期: 2022 年 12 卷 10 期

页码:

收录情况: SCI

摘要: The maize (Zea mays L.) husk consists of multiple leaf layers and plays an important role in grain growth and development. Despite significant achievements in physiological and morphological research, few studies have focused on the detection of genetic loci underlying husk-related traits due to the lack of efficient tools. In this study, we constructed an ultra-high-density linkage map using genotyping by sequencing based on a recombinant inbred line population to estimate the genetic variance and heritability of 3 husk traits, i.e. husk length, husk width, and husk layer number in 3 field environments and the combined environment. The 3 husk traits showed broad phenotypic variation and high heritability; the broad-sense heritability (H-2) was 0.92, 0.84, and 0.86. Twenty quantitative trait loci were consistently detected more than 1 environment, including 9 for husk length, 6 for husk width, and 5 for husk layer number. These loci were considered as stable quantitative trait loci. Based on the quantitative trait loci mapping in the recombinant inbred line population, qHL6 and qHN4 were detected across all environments and inferred to be reliable and major-effect quantitative trait loci for husk length and husk layer number, respectively. In addition, several predicted candidate genes were identified in the region of qHL6 and qHN4, of which 17 candidate genes potentially play a role in biological processes related to development process and energy metabolism. These results will be as a useful resource for performing functional studies aimed at understanding the molecular pathways involved in husk growth and development.

  • 相关文献
作者其他论文 更多>>