Linkage map construction and QTL mapping for cold tolerance in Oryza rufipogon Griff. at early seedling stage

文献类型: 外文期刊

第一作者: Luo Xiang-dong

作者: Luo Xiang-dong;Zhao Jun;Dai Liang-fang;Zhang Fan-tao;Zhou Yi;Xie Jian-kun;Wan Yong

作者机构:

关键词: common wild rice;cold tolerance;quantitative trait loci (QTL);introgression

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 12 期

页码:

收录情况: SCI

摘要: Cold stress is one of the major restraints for rice production. Cold tolerance is controlled by complex genetic factor. In this study, a backcross inbred lines, (BILs) population derived from an inter-specific cross (Olyza sativa L.xO. rufipogon Griff.) was used for genetic linkage map construction and quantitative trait locus (QTL) mapping. A linkage map consisting of 153 markers was constructed, spanning 1596.8 cM with an average distance of 11.32 cM between the adjacent markers. Phenotypic evaluation of the parents and BILs under (6 +/- 1) degrees C cold stress revealed that the ability of cold tolerance in BILs at early seedling obeyed a skewed normal and continuous distribution. Fifteen QTLs on chromosomes 6, 7, 8, 11, and 12 were identified using survival percent (SP) and non death percent (NDP) as indicators of cold tolerance, which could explain 5.99 to 40.07% of the phenotypic variance, of which the LOD values ranged from 3.04 to 11.32. Four QTLs on chromosomes 3, 5 and 7 were detected using leaf conductivity (LC) and root conductivity (RC) as indicators of cold tolerance, ranging from 19.54 to 33.53% for the phenotypic variance explained and 2.54 to 6.12 for the LOD values. These results suggested that there might be multi major QTLs in O. rufipogon and some useful genes for cold tolerance have been transferred into cultivated rice, which would be helpful for cloning and utilizing the cold tolerance-responsive genes from wild rice.

分类号:

  • 相关文献

[1]Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings. Luo Xiang-dong,Liu Jian,Zhao Jun,Dai Liang-fang,Chen Ya-ling,Zhang Ling,Zhang Fan-tao,Xie Jian-kun,Hu Biao-lin. 2018

[2]Identification and molecular cytology analysis of cold tolerance introgression lines derived from Oryza sativa L. mating with O-rufipogon Griff.. Luo, Xiang-Dong,Dai, Liang-Fang,Cao, Juan-Fang,Jian, Shui-Rong,Chen, Ya-Ling,Xie, Jian-Kun,Hu, Biao-Lin.

[3]Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). Fu, Qiang,Tan, Lubin,Zhu, Zuofeng,Ma, Dan,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Fu, Qiang,Zhang, Peijiang,Zhan, Xinchun. 2010

[4]Quantitative trait loci underlying domestication and yield-related traits in an Oryza sativa x Oryza rufipogon advanced backcross population. Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Zhang, Peijiang. 2008

[5]Establishment of a rice transgene flow model for predicting maximum distances of gene flow in Southern China. Yao, Kemin,Hu, Ning,Chen, Wanlong,Li, Renzhong,Yuan, Qianhua,Wang, Feng,Qian, Qian. 2008

[6]Genetic structure of Oryza rufipogon Griff. in China. Wang, M. X.,Zhang, H. L.,Zhang, D. L.,Qi, Y. W.,Yu, P.,Wang, X. K.,Li, Z. C.,Fan, Z. L.,Pan, D. J.,Li, D. Y.,Cao, Y. S.,Qiu, Z. E.,Yang, Q. W.. 2008

[7]Development and identification of a introgression line with strong drought resistance at seedling stage derived from Oryza sativa L. mating with Oryza rufipogon Griff. Zhang, Fantao,Cui, Fenglei,Zhang, Liangxing,Wen, Xiufang,Luo, Xiangdong,Zhou, Yi,Zhang, June,Xie, Jiankun,Li, Xia,Wan, Yong.

[8]Linkage map construction and QTL identification of P-deficiency tolerance in Oryza rufipogon Griff. at early seedling stage. Luo, Xiang-Dong,Liu, Jian,Dai, Liang-Fang,Zhang, Fan-Tao,Xie, Jian-Kun,Wan, Yong.

[9]Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop-weed hybrids of rice. Yang, Xiao,Xia, Hui,Wang, Wei,Lu, Bao-Rong,Wang, Feng,Su, Jun,Snow, Allison A.. 2011

[10]GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Piperidis, Nathalie,Piperidis, George,Chen, Jian-wen,Deng, Hai-hua,Wang, Li-Ping,Jackson, Phillip. 2010

[11]Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. Wan, Hong-Shen,Yang, Wu-Yun,Li, Jun,Wan, Hong-Shen,Yang, Wu-Yun. 2014

[12]Research progress in BYDV resistance genes derived from wheat and its wild relatives. Zhang, Zengyan,Lin, Zhishan,Xin, Zhiyong. 2009

[13]Synchronous evidence from both phenotypic and molecular signatures for the natural occurrence of sympatric hybridization between cultivated soybean (Glycine max) and its wild progenitor (G-soja). Wang, Ke-Jing,Li, Xiang-Hua. 2014

[14]Genetic relationships among sympatric varieties of Acer mono in the Chichibu Mountains and Central Hokkaido, Japan. Liu, Chunping,Shen, Hailong,Cong, Jian,Lin, Cunxue,Saito, Yoko,Ide, Yuji. 2017

[15]Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Smykal, Petr,Coyne, Clarice J.,Hu, Jinguo,Ambrose, Mike J.,Maxted, Nigel,Schaefer, Hanno,Blair, Matthew W.,Berger, Jens,Greene, Stephanie L.,Nelson, Matthew N.,Besharat, Naghmeh,Varshney, Rajeev K.,Nelson, Matthew N.,Besharat, Naghmeh,Varshney, Rajeev K.,Vymyslicky, Tomas,Toker, Cengiz,Saxena, Rachit K.,Roorkiwal, Manish,Pandey, Manish K.,Varshney, Rajeev K.,Li, Ying H.,Wang, Li X.,Guo, Yong,Qiu, Li J.,Redden, Robert J..

[16]Genome-wide multilocus analysis of intraspecific differentiation in Oryza rufipogon Griff. from China and the influence of introgression from O. sativa L.. Li, F.,Pei, X. W.,Jia, S. R.,Wang, F.,Yuan, Q. H.,Wu, H. J.,Peng, Y. F.. 2013

[17]IDENTIFICATION OF EXOTIC GENETIC COMPONENTS AND DNA METHYLATION PATTERN ANALYSIS OF THREE COTTON INTROGRESSION LINES FROM Gossypium bickii. Shou Pu He,Jun Ling Sun,Chao Zhang,Xiong Ming Du.

[18]Transcriptome alteration in a rice introgression line with enhanced alkali tolerance. Zhang, Yunhong,Ou, Xiufang,Hu, Lanjuan,Yang, Chunwu,Wang, Shucai,Liu, Bao,Lin, Xiuyun,Wang, Jinming.

[19]A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. Wang, Wei,Xia, Hui,Yang, Xiao,Xu, Ting,Si, Hong Jiang,Cai, Xing Xing,Lu, Bao-Rong,Wang, Feng,Su, Jun,Snow, Allison A.. 2014

[20]Fine-scale phylogenetic structure and major events in the history of the current wild soybean (glycine soja) and taxonomic assignment of semi-wild type (glycine gracilis skvortz.) within the chinese subgenus soja. Wang, Ke-Jing,Li, Xiang-Hua,Liu, Yang.

作者其他论文 更多>>