您好,欢迎访问重庆市农业科学院 机构知识库!

The effects of polyethylene microplastics on the growth, reproduction, metabolic enzymes, and metabolomics of earthworms Eisenia fetida

文献类型: 外文期刊

作者: Yang, Xiaoxia 1 ; Zhang, Xuemei 1 ; Shu, Xiao 1 ; Gong, Jiuping 1 ; Yang, Junying 1 ; Li, Biquan 1 ; Lin, Junjie 2 ; Chai, Yong 1 ; Liu, Jianfei 1 ;

作者机构: 1.Chongqing Acad Agr Sci, Inst Agr Qual Stand & Testing Technol, Chongqing 401329, Peoples R China

2.Chongqing Three Gorges Univ, Key Lab Water Environm Evolut & Pollut Control Thr, Chongqing 404100, Peoples R China

3.Nongke Ave, Chongqing 401329, Peoples R China

关键词: Metabolite markers; Neurotoxicity; Energy disorder; Cytochrome P450 sub-enzymes; Antioxidant enzymes

期刊名称:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY ( 影响因子:6.8; 五年影响因子:6.9 )

ISSN: 0147-6513

年卷期: 2023 年 263 卷

页码:

收录情况: SCI

摘要: The existing data regarding the effects of polyethylene (PE) microplastics (MPs) smaller than 5 mm in size on earthworms are insufficient to fully comprehend their toxicity. In this study, earthworms Eisenia fetida were exposed to artificially added PE at a concentration ranging from 0.05 to 20 g/kg soil (0.005%-2%) for 60 days to determine the concentration range causing negative effects on earthworms and to uncover the potential toxic mechanisms. The individual growth, reproduction, and metabolic enzyme activities, including phase I enzymes (cytochrome P450 [CYP] 1A2, 2B6, 2C9, and 3A4), and phase II metabolic enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione sulfotransferase (GST)), and metabolomics were measured. The observed variations in responses of multiple cross-scale endpoints indicated that individual indices are less responsive to PE MPs than metabolic enzymes or metabolomics. Despite the absence of significant alterations in growth inhibition based on body weight, PE MPs at concentrations equal to or exceeding 2.5 g/kg were found to exert a toxic effect on earthworms, which was evidenced by significant changes in metabolic enzyme activities (CYP1A2, 2B6, 2C9, and 3A4, SOD, CAT, and GST) and important small molecule metabolites screened based on metabolomics, likely due to the bioaccumulation of PE. The toxicity of PE MPs to earthworms is inferred to be asso-ciated with neurotoxicity, oxidative damage, decreased detoxification capacity, energy metabolism imbalance, and impaired amino acid and purine metabolism due to bioaccumulation. The findings of this study will enhance our understanding of the molecular toxicity mechanisms of PE MPs and contribute to a more accurate assessment of the ecological risks posed by PE MPs in soil.

  • 相关文献
作者其他论文 更多>>