Suppression of OsVPE3 Enhances Salt Tolerance by Attenuating Vacuole Rupture during Programmed Cell Death and Affects Stomata Development in Rice

文献类型: 外文期刊

第一作者: Lu, Wenyun

作者: Lu, Wenyun;Guo, Fu;Wang, Mingqiang;Zeng, Zhanghui;Han, Ning;Yang, Yinong;Zhu, Muyuan;Bian, Hongwu;Deng, Minjuan;Yang, Yinong;Yang, Yinong

作者机构:

关键词: OsVPE3;Programmed cell death;Rice;Salt stress;Stomata;Vacuolar processing enzyme

期刊名称:RICE ( 影响因子:4.783; 五年影响因子:5.23 )

ISSN: 1939-8425

年卷期: 2016 年 9 卷

页码:

收录情况: SCI

摘要: Background: Vacuolar processing enzymes (VPEs) are cysteine proteinases that act as crucial mediators of programmed cell death (PCD) in plants. In rice, however, the role of VPEs in abiotic stress-induced PCD remains largely unknown. In this study, we generated OsVPE3 overexpression and suppression transgenic lines to elucidate the function of this gene in rice. Results: Survival rate and chlorophyll retention analyses showed that suppression of OsVPE3 clearly enhanced salt stress tolerance in transgenic rice compared with wild type. Furthermore, fragmentation of genomic DNA was inhibited in plants with down-regulated OsVPE3. Vital staining studies indicated that vacuole rupture occurred prior to plasma membrane collapse during salt-induced PCD. Notably, overexpression of OsVPE3 promoted vacuole rupture, whereas suppression of OsVPE3 attenuated or delayed the disintegration of vacuolar membranes. Moreover, we found that suppression of OsVPE3 caused decreased leaf width and guard cell length in rice. Conclusions: Taken together, these results indicated that suppression of OsVPE3 enhances salt tolerance by attenuating vacuole rupture during PCD. Therefore, we concluded that OsVPE3 plays a crucial role in vacuole-mediated PCD and in stomatal development in rice.

分类号:

  • 相关文献

[1]Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. Deng, Minjuan,Bian, Hongwu,Xie, Yakun,Kim, Yongho,Wang, Wenzhe,Lin, Erpei,Zeng, Zhanghui,Guo, Fu,Han, Ning,Wang, Junhui,Zhu, Muyuan,Pan, Jianwei,Qian, Qian. 2011

[2]Ubiquitin-specific protease 24 negatively regulates abscisic acid signalling in Arabidopsis thaliana. Zhao, Jinfeng,Gao, Yanan,Gao, Ying,Li, Xueyong,Zhou, Huapeng,Guo, Yan,Zhou, Huapeng,Zhang, Ming,Li, Ming,Zhang, Ming,Li, Long,Yang, Yuhong.

[3]The expression pattern of a rice proteinase inhibitor gene OsPI8-1 implies its role in plant development. Wang, Jiang,Shi, Zhen-Ying,Wan, Xin-Shan,Zhang, Jing-Liu,Shen, Ge-Zhi. 2008

[4]Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Hussain, Sajid,Zhang Jun-hua,Zhong Chu,Zhu Lian-feng,Cao Xiao-chuang,Yu Sheng-miao,James, Allen Bohr,Hu Ji-jie,Jin Qian-yu. 2017

[5]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[6]Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Liang, Jing-long,Zhao, Zheng-wu,Zhang, Tao,Liang, Jing-long,Qu, Ying-ping,Ma, Xiao-ding,Cao, Gui-lan,Han, Long-zhi,Yang, Chun-gang,Zhang, San-yuan.

[7]INTERACTIVE EFFECTS OF SALINITY AND PROLINE ON RICE AT THE ULTRASTRUCTURAL LEVEL. Sha, Han-Jing,Hu, Wen-Cheng,Jia, Yan,Liu, Hua-Long,Wang, Jing-Guo,Zou, De-Tang,Zhao, Hong-Wei,Chang, Hui-Lin. 2017

[8]Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Chen, Yixing,Zhou, Xiaojin,Chang, Shu,Chu, Zhilin,Wang, Hanmeng,Han, Shengcheng,Wang, Yingdian,Zhou, Xiaojin.

[9]Response of vacuolar processing enzyme in Malus hupehensis and MhVPE gamma-overexpressing Arabidopsis to high temperature stress. Su, Qian,Men, Xiu-Jin,Zhang, Wei-Wei,Fan, Shu-Lei,Yan, Li-Juan,Yang, Hong-Qiang,Ran, Kun.

[10]Physiological fundamentals of AnM technique in peanut production: Stomatal oscillations in intact and excised leaves of peanut plants grown with a modified AnM technique. Qin, Feifei,Takano, Tetsuo,Qin, Feifei,Xu, Hui-lian,Qin, Feifei,Li, Fenglan. 2012

[11]Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Li, Xin,Sun, Zenghui,Shao, Shujun,Zhang, Shuai,Ahammed, Golam Jalal,Zhang, Guanqun,Jiang, Yuping,Zhou, Jie,Xia, Xiaojian,Zhou, Yanhong,Yu, Jingquan,Shi, Kai,Li, Xin,Jiang, Yuping,Yu, Jingquan,Shi, Kai.

[12]Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Lin, Xiuyan,Lu, Xu,Zhang, Fangyuan,Shen, Qian,Wu, Shaoyan,Chen, Yunfei,Wang, Tao,Tang, Kexuan,Zhou, Yin,Zhang, Jianjun.

[13]Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomata! Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Wang, Jun,Lu, Wei,Tong, Yuxin,Yang, Qichang,Wang, Jun,Lu, Wei,Tong, Yuxin,Yang, Qichang. 2016

[14]Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Zhang, Haiwen,Zhao, Fu-Geng,Wang, Yuan,Zhang, Haiwen,Yu, Yuexuan,Song, Jiali,Li, Legong,Zhang, Haiwen,Tang, Ren-Jie,Luan, Sheng,Zhang, Haiwen.

[15]Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress. Fu, Q. S.,Yang, R. C.,Zhao, B.,Zhou, C. L.,Guo, Y. -D.,Fu, Q. S.,Wang, H. S.,Ren, S. X..

[16]CDPK1, an Arabidopsis thaliana calcium-dependent protein kinase, is involved in plant defense response. Nie, L.,Wang, R.,Li, G.,Nie, L.,Xia, Y..

[17]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[18]Comparative Transcriptomic Analysis Reveals That Ethylene/H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. Wang, Hong,Lin, Jing,Chang, Youhong,Jiang, Cai-Zhong,Jiang, Cai-Zhong. 2017

[19]Programmed cell death is responsible for replaceable bud senescence in chestnut (Castanea mollissima BL.). Wang, Guangpeng,Zhang, Zhihong,Zhao, Guiling,Wang, Guangpeng,Kong, Dejun,Liu, Qingxiang. 2012

[20]Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Liu, Yong-Hua,Offler, Christina E.,Ruan, Yong-Ling,Liu, Yong-Hua. 2013

作者其他论文 更多>>