Soil conditioners promote the formation of Fe-bound organic carbon and its stability

文献类型: 外文期刊

第一作者: Li, Qi

作者: Li, Qi;Li, Linfeng;Lin, Xiaoyang;Li, Yichun;Li, Qi;Li, Linfeng;Lin, Xiaoyang;Li, Yichun;Li, Qi;Li, Linfeng;Lin, Xiaoyang;Li, Yichun;Du, Huihui

作者机构:

关键词: Soil conditioner; Fe-bound organic carbon; Organic carbon stability; SR-FTIR

期刊名称:JOURNAL OF ENVIRONMENTAL MANAGEMENT ( 影响因子:8.7; 五年影响因子:8.4 )

ISSN: 0301-4797

年卷期: 2024 年 349 卷

页码:

收录情况: SCI

摘要: The close association of soil organic carbon (SOC) with Fe oxides is an important stabilization mechanism for soil organic matter (SOM) against biodegradation. Soil conditioners are of great importance in improving soil quality and soil health. Yet it remains unclear how different conditioners would affect the fractionation of SOC, particularly the Fe-bound organic carbon (Fe-OC). Field-based experiments were conducted in farmland to explore the fractionation of organic carbon (OC) and Fe oxides under the effects of three different soil conditioners (mineral, organic, and microbial conditioners). The results showed that all soil conditioners increased the total OC and Fe-OC contents, with the contribution of Fe-OC to total OC increasing from 1.57% to 2.99%. The low OC/Fe molar ratio indicated that surface adsorption played a crucial role in soil Fe-OC accumulation. Nuclear magnetic resonance (NMR) results suggested that soil conditioner altered the composition of SOM, accelerating O-alkyl C degradation and increasing recalcitrant alkyl C and aromatic C sequestration. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis indicated that all conditioners promoted the association of OC and Fe oxides. Furthermore, comprehensive analysis of 13C isotope and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy showed that the mineral conditioner enhanced the association of microbial-derived OC and Fe oxides, whereas the organic conditioner increased the association of plant-derived OC with Fe oxides. These findings provide important insights into the potential mechanisms through which soil conditioners regulate the stability of OC and guide agricultural management.

分类号:

  • 相关文献
作者其他论文 更多>>