Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley

文献类型: 外文期刊

第一作者: Xu Xin-Gang

作者: Xu Xin-Gang;Zhao Chun-Jiang;Wang Ji-Hua;Li Cun-Jun;Yang Xiao-Dong

作者机构:

关键词: hyperspectral remote sensing;normalized reflectance;slope;angle;optimal combination principle;leaf nitrogen concentration

期刊名称:JOURNAL OF INFRARED AND MILLIMETER WAVES ( 影响因子:0.557; 五年影响因子:0.445 )

ISSN: 1001-9014

年卷期: 2013 年 32 卷 4 期

页码:

收录情况: SCI

摘要: The paper proposed a method to monitor LNC in crop with hyperspectral remote sensing. Taking the LNC monitoring of barley that is more demanding for nitrogen fertilization as a case, this study employs new spectral features such as slopes and angles extracted from the normalized reflectance curves in Visible-Near Infrared region to evaluate LNC, At the same time, the optimal combination principle that was widely used in the combinated forecasting domains was presented to estimate LNC. The analysis resluts proved that most of the new spectral features propsoed in the study exhibited significant correlations with LNC. Among the new spectral features, the key features of slopes (K-re/K-pb and K-pb) and angles (A(delta)/A(alpha) and A(delta)/A(theta)) could well describe the dynamic pattern of LNC changes in crop. The optimal combination algorithm determined the optimal combination with K-re/K-pb and K-nir1, which could increase the spectral responding to LNC, strengthen the stability of models monitoring LNC and improve the accuracy of LNC estimates.

分类号:

  • 相关文献

[1]ESTIMATING LEAF NITROGEN CONCENTRATION IN BARLEY BY COUPLING HYPERSPECTRAL MEASUREMENTS WITH OPTIMAL COMBINATION PRINCIPLE. Xu, Xingang,Zhao, Chunjiang,Song, Xiaoyu,Yang, Xiaodong,Yang, Guijun. 2014

[2]Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. Zhong, XH,Peng, SB,Sanico, AL,Liu, HX. 2003

[3]Using new hyperspectral index to estimate leaf chlorophyll content in winter wheat. Xu, Xingang,Song, Xiaoyu,Li, Cunjun,Wang, Jihua. 2012

[4]Using optimal combination method and in situ hyperspectral measurements to estimate leaf nitrogen concentration in barley. Xu, Xin-gang,Zhao, Chun-jiang,Wang, Ji-hua,Zhang, Jing-cheng,Song, Xiao-yu.

[5]Estimation of Rice Canopy Nitrogen Concentration by Hyperspectral Remote Sensing. Wang, Jingjing,Sun, Ling,Shi, Chunlin,Tian, Qingjiu. 2013

[6]Estimation of total suspended solids concentration by hyperspectral remote sensing in Liaodong Bay. Wang, Jingjing,Tian, Qingjiu. 2015

[7]New Vegetation Index Fusing Visible-Infrared and Shortwave Infrared Spectral Feature for Winter Wheat LAI Retrieval. Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Bao Yan-song. 2013

[8]Band Depth Analysis and Partial Least Square Regression Based Winter Wheat Biomass Estimation Using Hyperspectral Measurements. Fu Yuan-yuan,Wang Ji-hua,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan. 2013

[9]Research of Cotton Canopy Characteristic Information by Hyperspectral Remote Sensing Data. Qi Ya-qin,Lv Xin,Duan Zhen-yu. 2013

[10]Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data. Kong, Weiping,Huang, Wenjiang,Zhou, Xianfeng,Kong, Weiping,Zhou, Xianfeng,Song, Xiaoyu,Casa, Raffaele. 2016

[11]A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements. Zhao, Feng,Guo, Yiqing,Verhoef, Wout,Gu, Xingfa,Liu, Liangyun,Yang, Guijun. 2014

[12]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

[13]The Study of Winter Wheat Biomass Estimation Model Based on Hyperspectral Remote Sensing. Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Meng, Lumin. 2016

[14]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Zhao, Jinling,Zhang, Dongyan,Luo, Juhua,Wang, Dacheng,Huang, Wenjiang. 2012

[15]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[16]Hyperspectral Discrimination and Response Characteristics of Stressed Rice Leaves Caused by Rice Leaf Folder. Liu, Zhanyu,Ding, Xiaodong,Zhou, Bin,Liu, Zhanyu,Cheng, Jia-an,Huang, Wenjiang,Li, Cunjun,Xu, Xingang,Shi, Jingjing. 2012

[17]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Zhao, Jinling,Yuan, Lin,Zhang, Dongyan,Zhang, Jingcheng,Gu, Xiaohe,Huang, Linsheng,Zhang, Dongyan. 2013

[18]Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. Xie, Qiaoyun,Huang, Wenjiang,Xie, Qiaoyun,Dash, Jadunandan,Song, Xiaoyu,Wang, Renhong,Huang, Linsheng,Zhao, Jinling.

[19]Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Liang, Liang,Zhang, Lianpeng,Lin, Hui,Liang, Liang,Zhao, Shuhe,Liang, Liang,Di, Liping,Deng, Meixia,Qin, Zhihao.

[20]Comparison of Four Chemometric Techniques for Estimating Leaf Nitrogen Concentrations in Winter Wheat (Triticum Aestivum) Based on Hyperspectral Features. Li, Zh.,Wei, Ch.,Wang, J.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Wang, J..

作者其他论文 更多>>