Spatial differences influence nitrogen uptake, grain yield, and land-use advantage of wheat/soybean relay intercropping systems

文献类型: 外文期刊

第一作者: Raza, Muhammad Ali

作者: Raza, Muhammad Ali;Zhiqi, Wang;Liang, Xue;Luo, Shuanglong;Zhongming, Ma;Raza, Muhammad Ali;Din, Atta Mohi Ud;Rehman, Sana Ur;Haider, Imran;Gul, Hina;Bukhari, Birra;Rahman, Muhammad Habib Ur;El Sabagh, Ayman;Qin, Ruijun

作者机构:

期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.6; 五年影响因子:4.9 )

ISSN: 2045-2322

年卷期: 2023 年 13 卷 1 期

页码:

收录情况: SCI

摘要: Cereal/legume intercropping is becoming a popular production strategy for higher crop yields and net profits with reduced inputs and environmental impact. However, the effects of different spatial arrangements on the growth, grain yield, nitrogen uptake, and land-use advantage of wheat/soybean relay intercropping are still unclear, particularly under arid irrigated conditions. Therefore, in a three-year field study from 2018 to 2021, soybean was relay intercropped with wheat in different crop configurations (0.9 m, narrow strips; 1.8 m, medium strips; and 2.7 m, wide strips), and the results of intercropping systems were compared with their sole systems. Results revealed that intercrops with wide strips outperformed the narrow and medium strips, when the objective was to obtain higher total leaf area, dry matter, nitrogen uptake, and grain yield on a given land area due to reduced interspecific competition between intercrops. Specifically, at maturity, wide strips increased the dry matter accumulation (37% and 58%) and its distribution in roots (37% and 55%), straw (40% and 61%), and grains (30% and 46%) of wheat and soybean, respectively, compared to narrow strips. This enhanced dry matter in wide strips improved the soybean's competitive ability (by 17%) but reduced the wheat's competitive ability (by 12%) compared with narrow strips. Noticeably, all intercropping systems accumulated a significantly higher amount of nitrogen than sole systems, revealing that wheat/soybean relay intercropping requires fewer anthropogenic inputs (nitrogen) and exerts less pressure on the ecosystem than sole systems. Overall, in wide strips, intercropped wheat and soybean achieved 62% and 71% of sole wheat and soybean yield, respectively, which increased the greater total system yield (by 19%), total land equivalent ratio (by 24%), and net profit (by 34%) of wide strips compared to narrow strips. Our study, therefore, implies that the growth parameters, grain yields, nutrient accumulation, and land-use advantage of intercrop species could be improved with the proper spatial arrangement in cereal/legume intercropping systems.

分类号:

  • 相关文献
作者其他论文 更多>>