Responses of soil microbial community to different concentration of fomesafen

文献类型: 外文期刊

第一作者: Xu, Jun

作者: Xu, Jun;Dong, Fengshou;Liu, Xingang;Zheng, Yongquan

作者机构:

关键词: Fomesafen;Microbial activity;Community structure;Functional diversity;nifH

期刊名称:JOURNAL OF HAZARDOUS MATERIALS ( 影响因子:10.588; 五年影响因子:10.129 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Fomesafen degrades slowly in soils and has been linked to crop damage. However, the effect of its residues on soil microbial communities is unknown. The goal of this work was to assess the effect of applying three different doses of fomesafen on microbial community structure and functional diversity as measured by phospholipid fatty acid (PLFA) levels, community-level physiological profiles (CLPPs) and real-time PCR. Our results indicate that applying 100 times the recommended dose of fomesafen (T100) adversely affects soil microbial activity and stresses soil microbial communities as reflected by the reduced respiratory quotient (qCO_2, Q_R). The PLFA analysis showed that high levels of fomesafen treatment (T100) decreased the total amount of PLFAs and both bacterial (both Gram-positive (GP) bacteria and Gram-negative (GN) bacteria) and fungal biomass but increased the microbial stress level. However, the BIOLOG results are not consistent with our other results. The addition of fomesafen significantly increased the average well color development, substrate utilization, and the functional diversity index (H'). Additionally, the abundance of the nifH (N_2 -fixing bacteria) gene was reduced in the presence of high concentrations of fomesafen (T100). Taken together, these results suggest that the addition of fomesafen can alter the microbial community structure and functional diversity of the soil, and these parameters do not recover even after a 90-day incubation period.

分类号: TB1

  • 相关文献

[1]Impact of fluxapyroxad on the microbial community structure and functional diversity in the silty-loam soil. Xu Jun,Liu Yong-zhuo,Dong Feng-shou,Liu Xin-gang,Zhang Wen-wen,Zheng Yong-quan. 2015

[2]Differential sensitivity of field muskmelon (Cucumis melo L. var. agrestis Naud.) populations to nicosulfuron, imazapic, fomesafen and bentazon. Xu, Hongle,Su, Wangcang,Lu, Chuantao,Zhang, Zhenchen,Xue, Fei,Wu, Renhai,Xu, Hongle,Su, Wangcang,Lu, Chuantao,Zhang, Zhenchen,Xue, Fei,Wu, Renhai,Li, Honglian,Yang, Meng. 2018

[3]Microbial Degradation of Fomesafen by a Newly Isolated Strain Pseudomonas zeshuii BY-1 and the Biochemical Degradation Pathway. Feng, Zhao-zhong,Zhang, Jun,Zhang, Jing,Huang, Xing,Lu, Peng,Li, Shun-peng,Feng, Zhao-zhong,Li, Qin-fen.

[4]Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Singh, Rajesh K.,Singh, Pratiksha,Song, Qi-Qi,Xing, Yong-Xiu,Yang, Li-Tao,Li, Yang-Rui,Li, Yang-Rui. 2017

[5]Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by C-13-DNA-SIP. Fan, Fenliang,Yin, Chang,Li, Zhaojun,Song, Alin,Liang, Yongchao,Tang, Yongjun,Zou, Jun,Wakelin, Steven A..

[6]Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China. Zhang, Xincheng,Yang, Litao,Li, Yangrui,Lin, Li,Hu, Chunjin,Li, Yangrui,Lin, Li,Yang, Litao,Li, Yangrui,Li, Zhengyi,Chang, Siping,An, Qianli.

[7]Variation in the active diazotrophic community in rice paddy - nifH PCR-DGGE analysis of rhizosphere and bulk soil. Wartiainen, Ingvild,Rasmussen, Ulla,Eriksson, Torsten,Zheng, Weiwen. 2008

[8]Effects of long-term fertilization on nifH gene diversity in agricultural black soil. Tang, Hui,Chi, Fengqin,Wei, Dan,Tang, Hui,Tang, Hui,Yu, Miao,Wang, Yanyuan,Han, Xiaowan,Wang, Xiaogai,Jin, Wei. 2012

[9]Interactive Effects of Lead and Bensulfuron-Methyl on Decomposition of C-14-Glucose in Paddy Soils. Hou Xian-Wen,Wu Jian-Jun,Xu Jian-Ming,Tang Cai-Xian,Hou Xian-Wen,Xu Jian-Ming,Tang Cai-Xian. 2009

[10]Straw coverage alleviates seasonal variability of the topsoil microbial biomass and activity. Lou, Yilai,Liang, Wenju,Lou, Yilai,Xu, Minggang,He, Xinhua,Wang, Yidong,Zhao, Kai.

[11]Influence of host seed on metabolic activity of Enterobacter cloacae in the spermosphere. Roberts, D. P.,Baker, C. J.,Liu, S.,Kobayashi, D. Y..

[12]Soil Aggregation and Microbial Responses to Straw Pulping Byproducts. Xiao, C.,Fauci, A.,Bezdicek, D. F.,Pan, W. L.,Xiao, C.,McKean, W. T..

[13]Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Xu, Jun,Wu, Xiaohu,Dong, Fengshou,Liu, Xingang,Tian, Chunyan,Zheng, Yongquan.

[14]Litter mass loss and nutrient dynamics of four emergent macrophytes during aerial decomposition in freshwater marshes of the Sanjiang plain, Northeast China. Zhang, Xinhou,Song, Changchun,Mao, Rong,Shi, Fuxi,Zhu, Xiaoyan,Zhang, Xinhou,Zhu, Xiaoyan,Tao, Baoxian,Yang, Guisheng,Hou, Aixin.

[15]Do flower mixtures with high functional diversity enhance aphid predators in wildflower strips?. Uyttenbroeck, Roel,Hatt, Severin,Lopes, Thomas,Mouchon, Pierre,Francis, Frederic,Hatt, Severin,Chen, Julian,Uyttenbroeck, Roel,Monty, Arnaud,Mouchon, Pierre,Piqueray, Julien. 2017

[16]Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Zhang, Qing,Li, Frank Yonghong,Niu, Jianming,Kang, Sarula,Ma, Wenjing,Buyantuev, Alexander,Jiang, Lin,Ding, Yong. 2017

[17]Expression Profiling of Mitogen-Activated Protein Kinase Genes Reveals Their Evolutionary and Functional Diversity in Different Rubber Tree (Hevea brasiliensis) Cultivars. Jin, Xiang,Zhu, Liping,Yao, Qi,Meng, Xueru,Ding, Guohua,Wang, Dan,Tong, Zheng,Wang, Xuchu,Jin, Xiang,Zhu, Liping,Xie, Quanliang,Tao, Chengcheng,Yu, Li,Li, Hongbin,Wang, Xuchu. 2017

[18]Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. Zhang, Ximei,Zhang, Ximei,Lu, Xiaotao,Han, Xingguo,Johnston, Eric R.,Barberan, Albert,Ren, Yi,Han, Xingguo.

[19]Effects of cultivation of OsrHSA transgenic rice on functional diversity of microbial communities in the soil rhizosphere. Zhang, Xiaobing,Wang, Xujing,Tang, Qiaoling,Dong, Yufeng,Pang, Weimin,Yang, Jiangtao,Wang, Zhixing,Zhang, Xiaobing,Li, Ning,Liu, Peilei. 2015

[20]Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Yu, X. M.,Yu, T.,Dong, Q. L.,An, M.,Wang, H. R.,Ai, C. X.,Yu, T.,Yin, G. H.,Dong, Q. L.. 2015

作者其他论文 更多>>