Sirtuin 3 regulation: a target to alleviate beta-hydroxybutyric acid-induced mitochondrial dysfunction in bovine granulosa cells

文献类型: 外文期刊

第一作者: Zhao, Shanjiang

作者: Zhao, Shanjiang;Gong, Jianfei;Wang, Yi;Heng, Nuo;Wang, Huan;Hu, Zhihui;Wang, Haoyu;Zhang, Haobo;Zhu, Huabin

作者机构:

关键词: BHBA; Dairy cows; Granulosa cells; Ketosis; Mitochondrial function; Sirt3

期刊名称:JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY ( 影响因子:7.0; 五年影响因子:7.3 )

ISSN: 1674-9782

年卷期: 2023 年 14 卷 1 期

页码:

收录情况: SCI

摘要: BackgroundDuring the transition period, the insufficient dry matter intake and a sharply increased in energy consumption to produce large quantities of milk, high yielding cows would enter a negative energy balance (NEB) that causes an increase in ketone bodies (KBs) and decrease in reproduction efficiency. The excess concentrations of circulating KBs, represented by beta-hydroxybutyric acid (BHBA), could lead to oxidative damage, which potentially cause injury to follicular granulosa cells (fGCs) and delayed follicular development. Sirtuin 3 (Sirt3) regulates mitochondria reactive oxygen species (mitoROS) homeostasis in a beneficial manner; however, the molecular mechanisms underlying its involvement in the BHBA-induced injury of fGCs is poorly understood. The aim of this study was to explore the protection effects and underlying mechanisms of Sirt3 against BHBA overload-induced damage of fGCs.ResultsOur findings demonstrated that 2.4 mmol/L of BHBA stress increased the levels of mitoROS in bovine fGCs. Further investigations identified the subsequent mitochondrial dysfunction, including an increased abnormal rate of mitochondrial architecture, mitochondrial permeability transition pore (MPTP) opening, reductions in mitochondrial membrane potential (MMP) and Ca2+ release; these dysfunctions then triggered the caspase cascade reaction of apoptosis in fGCs. Notably, the overexpression of Sirt3 prior to treatment enhanced mitochondrial autophagy by increasing the expression levels of Beclin-1, thus preventing BHBA-induced mitochondrial oxidative stress and mitochondrial dysfunction in fGCs. Furthermore, our data suggested that the AMPK-mTOR-Beclin-1 pathway may be involved in the protective mechanism of Sirt3 against cellular injury triggered by BHBA stimulation.ConclusionsThese findings indicate that Sirt3 protects fGCs from BHBA-triggered injury by enhancing autophagy, attenuating oxidative stress and mitochondrial damage. This study provides new strategies to mitigate the fGCs injury caused by excessive BHBA stress in dairy cows with ketosis.

分类号:

  • 相关文献
作者其他论文 更多>>