Keystone taxa of phoD-harboring bacteria mediate alkaline phosphatase activity during biochar remediation of Cd-contaminated soil

文献类型: 外文期刊

第一作者: Wang, Qiang

作者: Wang, Qiang;Geng, Zeng-chao;Xu, Chen-yang;Wang, Qiang;Geng, Zeng-chao;Xu, Chen-yang;Duan, Cheng-jiao;Geng, Zeng-chao;Xu, Chen-yang;Geng, Zeng-chao;Xu, Chen-yang

作者机构:

关键词: P -modified biochar; Cadmium; Alkaline phosphatase; phoD -harboring bacteria

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:9.8; 五年影响因子:9.6 )

ISSN: 0048-9697

年卷期: 2024 年 906 卷

页码:

收录情况: SCI

摘要: Phosphorus (P)-modified biochar can efficiently remediate cadmium (Cd)-contaminated soil. However, the mechanisms of responses of alkaline phosphatase (ALP) and phoD-harboring microorganisms, which are notably sensitive to Cd and P, are not clear during the remediation process. In this study, apple (Malus domestica) tree branches were co-pyrolyzed with tripotassium phosphate (K3PO4) to prepare P-modified biochar, which was used to remediate Cd-soil contaminated soil collected near a mine site. The effect of P-modified biochar on the composition of the phoD-harboring microbial community and its mechanism of interacting with ALP were analyzed. The results showed that the application of P-modified biochar to Cd-contaminated soil promoted the co-precipitation of Cd and phosphate and reduced the content of bioavailable Cd by 69.77 %. P-modified biochar improved the complexity and stability of the soil phoD-harboring microbial community. Furthermore, this study clarified that ALP activity was not completely regulated by the abundance of phoD, but Priestia and Massilia that contain phoD genes dominated the activity of ALP in rhizosphere and bulk soils, respectively. It is notable that bioavailable Cd significantly stimulated Priestia, Massilia, and ALP activity. These findings provide a theoretical basis for the application of P-modified biochar to the remediation of soil contaminated with Cd with respect to P functional microorganisms.

分类号:

  • 相关文献
作者其他论文 更多>>