Cadmium contamination triggers negative bottom-up effects on the growth and reproduction of Frankliniella occidentalis (Thysanoptera: Thripidae) without disrupting the foraging behavior of its predator, Orius sauteri (Heteroptera: Anthocoridae)

文献类型: 外文期刊

第一作者: Liu, Junxiu

作者: Liu, Junxiu;Zang, Liansheng;Liu, Junxiu;Di, Ning;Zhu, Zhengyang;Wang, Su;Zhang, Kai;Trumble, John T.;Zang, Liansheng

作者机构:

关键词: Heavy metal; Pest; Bio-control agent; Choice; Fitness; Tri-trophic interaction

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:5.8; 五年影响因子:5.4 )

ISSN: 0944-1344

年卷期: 2023 年 30 卷 15 期

页码:

收录情况: SCI

摘要: Heavy metal contaminants may influence tri-trophic interactions among plants, herbivores, and their natural enemies and affect the results of pest management practices. We examined how the widely distributed heavy metal cadmium (Cd) could modify interactions between kidney bean, Phaseolus vulgaris L., western flower thrips, Frankliniella occidentalis Pergande, and a predator, Orius sauteri (Poppius) by examining Cd effects on the feeding damage on leaves, the growth and reproduction of the thrips, and the feeding and plant location selection behaviors of predators. Leaf feeding damage was significantly reduced only at the highest Cd treatment (625 mg L-1). Survival, reproduction, and population growth of thrips decreased with the increase of Cd treatment concentration (0, 25, and 625 mg L-1). The reproduction rate of thrips from the highest Cd treatment group was reduced to less than 30% of the controls. Predator choice of plants was not impacted at the lowest level of Cd treatment (25 mg L-1) when prey were excluded, but the predators were deterred from plants treated at the high level of Cd (625 mg L-1). However, the predators responded strongly to the presence of prey, and the Cd-based deterrence was effectively eliminated when prey were added. Thus, the presence of Cd can cause a bottom-up effect on the fitness of pests without disrupting the foraging behavior of its predator. Our results provide baseline data on the toxic impacts on the pest and predator, and indicate that the ecology of the system and the biological control efficiency would be potentially impacted by high levels of Cd (625 mg L-1).

分类号:

  • 相关文献
作者其他论文 更多>>