Abscisic-Acid-Regulated Responses to Alleviate Cadmium Toxicity in Plants

文献类型: 外文期刊

第一作者: Zhao, Yuquan

作者: Zhao, Yuquan;Wang, Jiaqi;Zhang, Dawei;Wu, Jinfeng;Liu, Lili;Zhao, Yuquan;Huang, Wei;Li, Bao;Li, Mei;Yan, Mingli;Wang, Jiaqi;Zhang, Dawei;Wu, Jinfeng;Liu, Lili;Yan, Mingli;Huang, Wei;Li, Bao;Li, Mei;Yan, Mingli

作者机构:

关键词: exogenous ABA; Cd accumulation; abiotic stress; signal transduction; Cd-responsive gene

期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )

ISSN:

年卷期: 2023 年 12 卷 5 期

页码:

收录情况: SCI

摘要: High levels of cadmium (Cd) in soil can cause crop yield reduction or death. Cadmium accumulation in crops affects human and animal health as it passes through the food chain. Therefore, a strategy is needed to enhance the tolerance of crops to this heavy metal or reduce its accumulation in crops. Abscisic acid (ABA) plays an active role in plants' response to abiotic stress. The application of exogenous ABA can reduce Cd accumulation in shoots of some plants and enhance the tolerance of plants to Cd; therefore, ABA may have good application prospects. In this paper, we reviewed the synthesis and decomposition of ABA, ABA-mediated signal transduction, and ABA-mediated regulation of Cd-responsive genes in plants. We also introduced physiological mechanism underlying Cd tolerance because of ABA. Specifically, ABA affects metal ion uptake and transport by influencing transpiration and antioxidant systems, as well as by affecting the expression of metal transporter and metal chelator protein genes. This study may provide a reference for further research on the physiological mechanism of heavy metal tolerance in plants.

分类号:

  • 相关文献
作者其他论文 更多>>