您好,欢迎访问云南省农业科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
收录级别:SCI(精确检索)
59条记录
基于偏最小二乘法判别分析与随机森林算法的牛肝菌种类鉴别

光谱学与光谱分析 2022 EI SCI 北大核心 CSCD

摘要:牛肝菌作为一种著名的野生食用菌,具有较高的食用价值和经济价值.牛肝菌种类繁多,不易区分,建立一种有效、快速、可信的种类鉴别技术,可为牛肝菌提高品质提供一种方法.本研究采集云南不同地区7种野生牛肝菌共计683株,获取样品中红外光谱和紫外光谱,分析不同种类牛肝菌平均光谱图特征.基于多种预处理组合(SNV+SG,2D+MSC+SNV,1D+MSC+SNV+SG,MSC+2D)的单一光谱数据结合两种特征值提取法(PCA,LVs)构建了偏最小二乘法判别分析与随机森林算法并结合数据融合策略对牛肝菌进行种类鉴别,有一定的创新性.结果表明:(1)中红外光谱和紫外光谱的不同种类牛肝菌平均光谱吸收峰差异较小,吸光度具有细微差异.(2)合适的预处理可提高光谱数据信息,偏最小二乘法判别分析和随机森林算法模型的中红外光谱数据和紫外光谱数据最佳预处理组合为2D+MSC+SNV,SNV+SG,2D+MSC+SNV,1D+MSC+SNV+SG.(3)单一光谱模型中,中红外光谱模型优于紫外光谱模型,中红外光谱最佳预处理组合2D+MSC+SNV的偏最小二乘法判别分析模型正确率训练集99.78%,验证集99.12%;随机森林模型正确率训练集93.20%,验证集99%.(4)数据融合策略提高了分类正确率,低级融合的偏最小二乘法判别分析模型训练集和验证集正确率为100%,99.12%.随机森林模型训练集和验证集正确率为92.32%,99.14%.(5)随机森林算法中级数据融合Latent variable(LVs)正确率为训练集92.76%,验证集96.04%;中级数据融合Principal components analysis(CPA)正确率为训练集97.15%,验证集100%.(6)偏最小二乘法判别分析中级数据融合(LVs)正确率为训练集100%,验证集99.56%;中级数据融合(CPA)训练集和验证集正确率均能达到100%.基于偏最小二乘法判别分析和随机森林算法结合数据融合策略对牛肝菌进行种类鉴别,鉴别效果理想.偏最小二乘法判别分析中级数据融合(CPA)可作为一种低成本高效率的牛肝菌种类鉴别技术.

关键词: 牛肝菌;中红外光谱;紫外光谱;偏最小二乘法判别分析;随机森林;数据融合

 全文链接 请求原文
FTIR结合化学计量学对三七地下部位鉴别及皂苷含量预测

光谱学与光谱分析 2019 EI SCI 北大核心 CSCD

摘要:当今中药市场上掺假现象屡见不鲜,不良商贩利用三七须根粉末假冒主根和剪口粉末,严重影响三七的质量与药效。通过傅里叶变换红外光谱(FTIR)结合化学计量学建立三七主根、剪口和须根粉末鉴别及四种皂苷含量快速预测模型,为快速三七质量控制提供基础。采集三七主根、剪口和须根红外光谱,超高效液相色谱(UPLC)测量样品中三七皂苷R1、人参皂苷Rg1、人参皂苷Rb1和人参皂苷Rd含量。采用纵坐标归一化及二阶导数对原始红外光谱进行预处理;Kennard-stone算法将60个样本分为2/3训练集与1/3预测集。训练集数据结合支持向量机(SVM)判别建立三七主根、剪口和须根粉末鉴别模型,最佳核函数c和g采用交叉验证进行网格式搜索,预测集数据用于对判别模型进行外部验证。正交信号校正偏最小二乘回归(OSC-PLSR)建立三七中四种皂苷含量预测模型,红外光谱采用一阶、二阶导数及Savitsky-Golay平滑5点、7点、9点、11点预处理。60个样本分为2/3训练集与1/3预测集,训练集数据建立OSC-PLSR模型,预测集数据对OSC-PLSR模型的预测结果进行外部验证。结果显示:(1)二阶导数可有效的分离原始谱图的叠合隐蔽谱峰,并提高谱图的分辨率;(2)交叉验证网格式搜索计算出最佳核函数c=2.828 43,g=4.882 81×10~(-4),此时训练集判别正确率为100%;(3)SVM判别模型核函数设置为最佳核函数,预测集数据外部验证正确率为100%,所有样本均被正确鉴别;(4)三七皂苷R1、人参皂苷Rg1、人参皂苷Rb1和人参皂苷Rd最优含量预测模型预测值与UPLC检测值接近,预测效果良好。FTIR结合SVM判别能对三七主根、剪口和须根粉末快速鉴别,结合OSC-PLSR能对四种皂苷含量进行准确预测。该方法准确可靠,可为中药材三七提供快速有效的质量控制。

关键词: 傅里叶变换红外光谱 三七 地下部位鉴别 皂苷含量预测 化学计量学

 全文链接 请求原文
17种分类算法在牛肝菌种类鉴别研究中的应用

光谱学与光谱分析 2019 EI SCI 北大核心 CSCD

摘要:由于部分毒菌与野生食用菌形态和生物学特征相似,农民仅凭经验采集,难免将两者混淆,从而导致严重的食品安全事故。云南省作为国内野生食用菌产量最高、出口量最大的省份,野生食用菌产业发展为云南农村经济发展做出了突出贡献,对不同种类野生食用菌进行快速鉴别,有利于野生食用菌产业的健康发展;分析食用菌亲缘关系,对食用菌育种工作具有积极作用。七种牛肝菌样品,采自云南及周边七个产地,利用FTIR光谱仪分别采集菌柄和菌盖红外指纹图谱,基于低级与中级数据融合策略,将预处理后的菌柄和菌盖FTIR光谱数据进行融合,结合Decision Trees,Discriminant Analysis,Logistic Regression Classifiers,Support Vector Machines,Nearest Neighbor Classifiers和Ensemble Classifiers中的17种算法,分别建立菌柄、菌盖、低级数据融合和中级数据融合模型,每个分类模型连续进行10次运算,通过比较训练集分类正确率平均值,确定牛肝菌种类鉴别最佳分类算法。中级数据融合数据集进行系统聚类分析(HCA),对推测不同种类牛肝菌样品的亲缘关系进行鉴定。结果显示:(1)菌柄、菌盖和低级数据融合模型最佳分类算法均为Linear Discriminant,训练集分类正确率分别为92.8%,96.4%和97.6%。中级数据融合模型最佳分类算法为Subspace Discriminant,训练集分类正确率为100%;(2)菌柄、菌盖、低级数据融合和中级数据融合最佳分类模型,全部样品分类正确率平均值分别为93.61%,95.54%,96.99%和99.88%,中级数据融合模型优于其他三种模型,表明中级数据模型可以将相似度较高的样品区分开,且减少了产地对种类鉴别的影响;(3)中级数据融合模型数据集进行HCA,华丽牛肝菌和美味牛肝菌聚类距离最小,表明这两种牛肝菌化学信息较相似,亲缘关系较近;(4)华丽牛肝菌与皱盖疣柄牛肝菌聚类临界值距离最大,表明样品化学信息差异较大,亲缘关系较远。综上表明,基于中级融合策略将不同部位FTIR光谱数据融合,结合Subspace Discriminant与HCA,可以准确鉴别不同种类牛肝菌和快速推测样品亲缘关系,可作为野生食用菌种类鉴别与亲缘关系推测的一种新方法。

关键词: 牛肝菌 FTIR 种类鉴别 不同部位 数据融合

 全文链接 请求原文
红外光谱结合化学计量学快速鉴别云南重楼不同炮制品

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:中药炮制是根据中医学理论,改变中药的性味和功效,以达到缓和药性、减毒增效等作用。炮制对中药的活性成分、药效、毒副作用影响甚大,建立一个系统鉴别和评价中药不同炮制品的方法,可为中药质量和临床用药安全提供重要支撑。采用红外光谱法对9种云南重楼不同炮制品进行对比分析,结合化学计量学建立主成分-马氏距离(PCA-MD)判别模型进行鉴别分析。云南重楼不同炮制品的红外光谱经自动基线校正和纵坐标归一化预处理后,取其平均光谱图。九种重楼不同炮制品的平均红外光谱和二阶导数光谱显示:(1)其主要特征吸收峰为3 387,2 923,1 745,1 463,1 338,1 240,1 207,1 158,1 180,1 080,1 048,1 020,988,921,895,859,833,765,708,572和529cm~(-1);(2)重楼不同炮制品红外图谱的峰形基本相似,可显示出重楼所特有的红外光谱特征;(3)重楼不同炮制品红外图谱中少数特征吸收峰数目、位置和吸收强度存在差异,表明重楼经不同炮制后化学成分和含量发生了改变。红外光谱经多元散射校正(MSC),标准正态变量(SNV),一阶求导(1st Der),二阶求导(2nd Der)和平滑(SG)优化处理后,采用Kennard-Stone算法筛选训练集和预测集(3∶1),建立PCA-MD判别分析模型。结果显示,重楼不同炮制品的最佳预处理方法为1st Der+SG(11∶3)。提取前5个主成分,变量特征的解释能力为88.2%,以PC1,PC2和PC3为坐标轴建立PCA-MD三维得分图可知,九种炮制品可完全区分;其中重楼I,H,G和F的聚类效果最好,且前三种炮制品距离较近,表明晒干和烘干处理重楼与传统炮制重楼所含化学成分相似;重楼D和E空间距离较近,推测其经过微波和蒸汽高温处理后化学成分变化相似。预测集样本可准确的归属于训练集,PCA-MD判别模型的准确率为100%。红外光谱结合PCA-MD判别分析可准确区分云南重楼的不同炮制品,为云南重楼炮制品的临床应用提供参考,同时为中药炮制品的鉴别提供了借鉴。

关键词: 红外光谱 云南重楼 炮制 主成分-马氏距离判别模型

 全文链接 请求原文
FTIR结合SVR对三七总多糖含量快速预测

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:对中药进行快速质量控制,从整体层面反映中药的安全性与有效性具有重要意义。通过硫酸-苯酚显色反应测定三七总多糖含量,傅里叶变换红外光谱(FTIR)结合支持向量机回归(SVR)建立三七总多糖含量预测模型,以期为三七提供快速准确的质控方法。采集云南省12个产地60个三七样品的红外光谱,紫外分光光度法(UV-Vis)检测样品中总多糖含量。红外光谱经过二阶导数(2D)、正交信号校正(OSC)、小波变换(WT)和变量投影重要性(VIP)筛选等数据优化处理。SPXY算法将所有样本按2∶1的比例划分为训练集与预测集。训练集数据用于建立SVR预测模型,网格式搜索、遗传算法(GA)和粒子群优化算法(PSO)对SVR预测模型进行参数优化,预测集进一步对SVR模型的预测能力进行验证。结果显示:(1)葡萄糖标准品与三七总多糖在490nm处存在最大共有吸收峰,490nm可作为三七总多糖检测的定量波长;(2)文山丘北、曲靖师宗及红河蒙自等产地的三七总多糖含量较高,平均含量在25mg·g~(-1)以上;(3)分析3种参数优化模型的校正均方根误差(RMSEE)与预测均方根误差(RMSEP),与PSO优化模型相比,网格式搜索优化模型欠学习,GA优化模型过学习;(4)PSO-SVR模型对预测集数据预测效果最好,RMSEP=3.120 6,R_(pre)~2=83.13%,预测值与紫外检测值接近。表明FTIR结合PSO-SVR模型能够对三七中总多糖含量进行快速准确的预测,为保证三七稳定、安全与有效用药提供数据。

关键词: 紫外-可见分光光度法 傅里叶变换红外光谱 三七 总多糖 含量预测 整体性质量控制 支持向量机回归

 全文链接 请求原文
红外光谱结合化学计量学快速预测铁皮石斛中总黄酮含量

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:评价药用植物质量的主要手段之一是有效成分含量检测,不同采收期对药用植物有效成分含量有明显影响。通过傅里叶变换红外光谱(FTIR)结合化学计量学建立快速预测不同采收期铁皮石斛中总黄酮含量的方法,以期为铁皮石斛质量快速预测评价提供研究基础。采收2014年1至12月的铁皮石斛样品干燥粉碎;以氯化铝显色法测定铁皮石斛中总黄酮含量,分析不同采收时间铁皮石斛总黄酮的累积规律;采集样品红外光谱信息,归属红外吸收峰,拟合红外光谱数据和总黄酮含量数据,结合一阶导数、二阶导数、多元散射校正、标准正态变量、正交信号校正等对数据进行预处理,建立偏最小二乘回归模型预测样品中总黄酮含量。结果显示:(1)样品和标准品芦丁均在270nm附近有共有吸收峰,实验以270nm为总黄酮定量波长,标准曲线为y=6.076 5x+0.055 8,相关系数r=0.996 6,线性关系良好;重现性、精密度和稳定性相对标准偏差分别为1.00%,0.37%和0.28%,该方法稳定可靠;(2)总黄酮含量随时间变化趋势为先升高后降低,6月—8月样品含量较高,平均含量大于64.10mg·g~(-1);(3)铁皮石斛红外光谱数据与总黄酮含量拟合后进行一阶导数、二阶导数、多元散射校正、标准正态变量、正交信号校正等组合处理,用PLSR模型预测铁皮石斛的总黄酮含量,结果最佳预处理方式为2D+SG5+SNV+OSC-PLSR,训练集和验证集r分别为0.979 0和0.882 4,验证均方根误差(RMSEE)和预测均方根误差(RMSEP)分别为2.438 2和4.169 9,铁皮石斛中总黄酮含量预测值与测量值较接近,表明PLS模型可用于总黄酮含量的快速预测。傅里叶变换红外光谱结合化学计量学能实现铁皮石斛中总黄酮含量准确预测,为铁皮石斛质量评价提供快速、有效的方法。

关键词: 傅里叶变换红外光谱 铁皮石斛 总黄酮 含量预测

 全文链接 请求原文
多源异构光谱信息融合的食用牛肝菌鉴别方法

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:牛肝菌营养丰富,味道鲜美,备受各国消费者青睐。因种间差异和环境因素的多层次影响,不同种类及产地牛肝菌品质参差不齐。目前,利益驱动导致商家在牛肝菌销售过程中以次充好、以假乱真的行为扰乱了食用菌市场,不仅给消费者带来健康风险,也制约了牛肝菌的国际化贸易。采用多源异构信息融合策略对牛肝菌种类与产地进行鉴别,以期为追溯食用菌来源以及正确评价其品质提供一种快速有效的解决方法。试验样品灰褐牛肝菌(Boletus griseus)、栗色牛肝菌(B. umbriniporus)、美味牛肝菌(B. edulis)、皱盖疣柄牛肝菌(Leccinum rugosicepes)和绒柄牛肝菌(B. tomentipes)五种牛肝菌科(Boletaceae)真菌子实体采于云南省保山市、昆明市、玉溪市与红河州。采用傅里叶变换红外光谱仪(FTIR)和紫外可见分光光度计(UV-Vis)采集样品信息。Kennard-Stone算法将样品原始数据分为校正集和验证集。校正集基于FTIR、UV-Vis、低级、中级与高级数据融合建立偏最小二乘判别分析(PLS-DA)模型,其中决定系数(R2cal)、预测能力Q2、校正均方根误差(RMSEE)和交叉验证均方差(RMSECV)用来评价模型鲁棒性。研究结果显示:(1)不同种类及产地牛肝菌FTIR和UV-Vis吸收峰的峰位置、峰形和峰数相似,而吸收强度存有差异,表明牛肝菌所含化学成分相似,但含量有一定差别;(2)PLS-DA模型二维散点图可以看出,中级融合比低级融合能更好的鉴别样品种类及产地;(3)各模型中,中级融合模型具有更大的Q2和最小RMSECV,模型鲁棒性最强;(4)验证集样本用来验证模型泛化能力,FTIR、UV-Vis、低级融合、中级融合及高级融合模型样品种类鉴别正确率分别为92. 86%,35. 71%,97. 62%,100%和95. 23%;产地鉴别正确率分别为71. 43%,61. 90%,61. 90%,97. 62%和76. 19%。表明多源异构信息融合在一定程度上优于独立模型,其中,中级数据融合种类鉴别正确率100%,产地鉴别正确率97. 62%,模型具有更优的鉴别效果和泛化能力。FTIR和UV-Vis结合中级数据融合策略能实现牛肝菌种类快速精确鉴别,产地快速有效鉴别,可作为食用菌来源追溯以及品质评价的一种新方法。

关键词: 牛肝菌 FTIR UV-Vis 多源异构信息融合 种类及产地鉴别

 全文链接 请求原文
不同部位矿质元素与红外光谱数据融合对美味牛肝菌产地溯源研究

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:野生食用菌产地溯源研究中,采用单一有机成分或矿质元素指纹存在一定局限性。利用不同指纹分析技术的互补性与协同性,将不同部位与类型的化学信息进行融合,探讨此方法对野生食用菌产地溯源的可行性,以期为野生食用菌溯源提供新的思路与科学依据。通过测定云南7个产地、124个美味牛肝菌(菌柄、菌盖)中15种矿质元素的含量,以及子实体傅里叶变换红外光谱(FTIR)。标准正态变换(SNV)、二阶导数(2D)等算法对原始光谱进行预处理。基于低级与中级数据融合策略,将预处理后的FTIR光谱与菌柄、菌盖矿质元素数据进行融合,结合支持向量机(SVM)分别建立菌柄、菌盖、FTIR、低级数据融合(菌柄+菌盖,菌柄+菌盖+FTIR)与中级数据融合(菌柄+菌盖+FTIR)判别模型;分析比较模型参数,确定快速甄别美味牛肝菌产地的可靠方法。结果显示:(1)菌盖中Cd,Cr,Cu,Li,Mg,Na,P和Zn元素平均含量高于菌柄,Ba,Ca,Co,Ni,Rb,Sr和V元素在菌柄中平均含量高于菌盖。美味牛肝菌中人体必需矿质元素Ca,Cu,Mg,P和Zn平均含量远高于小麦、水稻干品和新鲜蔬菜,与动物干制品含量相似;(2)FTIR光谱数据最佳预处理方法为3D+SNV,其Q2和R2 Y分别为76.64%,88.91%;(3)菌柄、菌盖、FTIR、低级数据融合与中级数据融合SVM模型,c值分别为8 192,4 096,1.414 2,11.313 7,1和0.7071 1,菌柄和菌盖模型c值较大,表明采用单一菌柄或菌盖矿质元素含量数据,SVM训练存在过拟合风险,判别效果较差;(4)FTIR、低级数据融合和中级数据融合SVM模型,样品分类错误总数分别为7,9,7和0,中级数据融合(菌柄+菌盖+FTIR)模型样品分类正确率最高。表明基于中级融合策略将不同部位矿物元素和子实体FTIR光谱数据融合,可作为野生食用菌产地溯源的一种有效方法。

关键词: 产地溯源 美味牛肝菌 矿质元素 FTIR 不同部位 数据融合

 全文链接 请求原文
FTIR结合有效成分定量分析在傣药灯台叶质量控制中的应用

光谱学与光谱分析 2017 EI SCI 北大核心 CSCD

摘要:傣医药是我国传统医药的瑰宝,同时也是我国"四大民族医药"(藏、蒙、维、傣)之一。建立灯台树叶片(傣语习称"摆埋丁别")、嫩茎的傅里叶红外光谱和HPLC测定鸭脚树叶碱、熊果酸、齐墩果酸含量的方法以快速鉴别和区分不同药用部位,探讨嫩茎对灯台叶整体质量的影响及红外光谱结合高效液相色谱技术在傣药材质量评价中的应用。采集15批灯台叶和嫩茎红外光谱,平行三次,原始光谱经自动基线校正、自动平滑、纵坐标归一化、二阶求导等预处理后进行主成分分析,分别测定鸭脚树叶碱[乙腈-0.1%氨水(40∶60),检测波长287nm],熊果酸和齐墩果酸[甲醇-0.1%甲酸水(88∶12),检测波长210nm]的含量。灯台叶及嫩茎原始光谱呈现相似的变化规律,差异较小,经自动基线校正、自动平滑、纵坐标归一化和二阶求导处理后在3 000~2 800和1 800~500cm~(-1)波段中吸收峰数目和强度差异明显;由导数光谱数据的主成分得分图可得知叶片和嫩茎各为一类,且不同批次叶片之间的变异大于嫩茎;叶片中有效成分平均含量均明显高于嫩茎(鸭脚树叶碱含量为嫩茎中的3.8倍,熊果酸含量为嫩茎中的5.1倍,齐墩果酸含量为嫩茎中的4.2倍);叶片中鸭脚树叶碱、熊果酸和齐墩果酸平均含量分别为0.79,8.47,7.51mg·g~(-1),嫩茎中三者的平均含量分别为0.21,1.78,1.67mg·g~(-1),熊果酸、齐墩果酸含量均明显高于鸭脚树叶碱含量,而熊果酸和齐墩果酸含量相对稳定。灯台叶的整体质量优于嫩茎,市售掺杂嫩茎的灯台叶不能直接纳入傣药应用,应先进行一定的净选后再加以利用。红外光谱技术结合液相色谱能快速对傣药不同药用部位进行定性定量分析,系统评价药材整体质量,可用于傣药的质量控制。

关键词: FTIR指纹图谱 傣药 灯台叶 鸭脚树叶碱 熊果酸 齐墩果酸 质量控制

 全文链接 请求原文
红外光谱结合化学计量学对不同采收期滇重楼的定性定量分析

光谱学与光谱分析 2017 EI SCI 北大核心 CSCD

摘要:傅里叶变换红外光谱(FTIR)结合偏最小二乘判别分析(PLS-DA)和偏最小二乘回归(PLSR)对不同采收期滇重楼(Paris polyphylla var.yunnanensis)分别进行定性鉴别与定量分析,以期为滇重楼合理采收和鉴别评价提供科学依据。采集46份不同采收期滇重楼样品的红外光谱,对光谱数据进行自动基线校正+纵坐标归一化+自动平滑+小波去噪(WD)预处理后进行PLS-DA分析;采用超高效液相色谱测定样品中重楼皂苷Ⅰ,Ⅱ,Ⅵ,Ⅶ的含量,将液相测定数据与红外光谱数据进行拟合,经自动基线校正+纵坐标归一化+自动平滑+一阶求导+正交信号校正(OSC)优化处理后,建立滇重楼中重楼皂苷Ⅰ,Ⅱ,Ⅵ,Ⅶ的快速预测模型。结果显示,(1)原始红外光谱中主要吸收区域在950~700,1 200~950,1 800~1 500和2 800~3500cm-1附近。(2)PLS-DA得分图可准确区分不同采收期滇重楼样品。(3)液相数据显示重楼总皂苷含量随着年限的增加先成倍增加,再逐渐减少,最后呈现缓慢增加的趋势。(4)重楼总皂苷含量定量模型的预测值与真实值间无显著性差异,表明模型预测效果好。FTIR结合化学计量学可准确区分不同采收期滇重楼并快速预测其皂苷含量,为不同采收期滇重楼的鉴别和皂苷含量预测提供一种新方法,同时为确定滇重楼的最佳采收期提供参考依据。

关键词: 红外光谱 采收期 滇重楼 重楼皂苷 PLS-DA PLSR

 全文链接 请求原文

首页上一页123456下一页尾页