您好,欢迎访问甘肃省农业科学院 机构知识库!

Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages

文献类型: 外文期刊

作者: Li, Long 1 ; Sun, Jianhao 3 ; Zhang, Fusuo 2 ;

作者机构: 1.Shihezi Univ, Key Lab Oasis Ecol Agr, Coll Agr, Shihezi 832003, Xinjiang, Peoples R China

2.China Agr Univ, Coll Resources & Environm Sci, Beijing 100094, Peoples R China

3.Gansu Acad Agr Sci, Inst Soils & Fertilizers, Lanzhou 730070, Peoples R China

关键词: intercropping;interspecific interactions;maize;root weight density (RWD);wheat

期刊名称:SOIL SCIENCE AND PLANT NUTRITION ( 影响因子:2.389; 五年影响因子:2.525 )

ISSN: 0038-0768

年卷期: 2011 年 57 卷 1 期

页码:

收录情况: SCI

摘要: Intercropping two species at different growth stages is common in temperate and tropical areas. An apparent recovery of growth is observed in late-maturing species after early-maturing species have been harvested, but the mechanism remained unclear. This study tested the hypothesis that the roots of late-maturing species occupy greater below-ground space at later growth stages. The monolith method was employed to investigate the spatial and temporal distribution of maize grown alone (no interspecific interactions), maize intercropped with wheat (asymmetric interspecific facilitation before wheat harvesting), and maize intercropped with faba bean (symmetric interspecific facilitation) on August 8, September 2 and September 30, after harvesting of wheat (July 15) or faba bean (August 2). The results show that maize intercropped with wheat occupied more below-ground space at late growth stages than at early growth stages when the two crops grew at the same time, thus supporting our hypothesis. Furthermore, we also found that interspecific interactions during the co-growth stage of the two species led to a longer root life span in both maize intercropped with wheat and faba bean compared to the maize grown alone. The findings may partly explain the recovery of late-maturing species found in intercropping systems between two crop species with different growth stages and the complementary effect on the relationship between plant biodiversity and productivity.

  • 相关文献

[1]Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Xia, Hai-Yong,Wang, Zhi-Gang,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Xia, Hai-Yong,Christie, Peter.

[2]Root distribution and interactions between intercropped species. Li, L,Sun, JH,Zhang, FS,Guo, TW,Bao, XG,Smith, FA,Smith, SE.

[3]Effects of nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize, and faba bean. Li, WX,Li, L,Sun, JH,Zhang, FS,Christie, P. 2003

[4]Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Li, WX,Li, L,Sun, JH,Guo, TW,Zhang, FS,Bao, XG,Peng, A,Tang, C. 2005

[5]Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Li, L,Sun, JH,Zhang, FS,Li, XL,Yang, SC,Rengel, Z. 2001

[6]Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Xia HaiYong,Xue YanFang,Zhang FuSuo,Li Long,Zhao JianHua,Sun JianHao,Bao XingGuo,Eagling, Tristan. 2013

[7]Wheat/maize or wheat/soybean strip intercropping II. Recovery or compensation of maize and soybean after wheat harvesting. Li, L,Sun, JH,Zhang, FS,Li, XL,Rengel, Z,Yang, SC. 2001

[8]Interspecific complementary and competitive interactions between intercropped maize and faba bean. Li, L,Yang, SC,Li, XL,Zhang, FS,Christie, P.

[9]Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Xia, Hai-Yong,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Christie, Peter.

[10]Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Luo, Huisheng,Jin, Ming'an,Jin, Shelin,Jia, Qiuzhen,Zhang, Bo,Huang, Jin,Wang, Xiaoming,Sun, Zhenyu,Shang, Xunwu,Cao, Shiqin,Duan, Xiayu,Zhou, Yilin,Chen, Wanquan,Liu, Taiguo.

[11]Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Fan, Fenliang,Zhang, Fusuo,Song, Yana,Sun, Jianhao,Bao, Xingguo,Guo, Tianwen,Li, Long. 2006

[12]Effect of phosphorus application and strip-intercropping on yield and some wheat-grain components in a wheat/maize/potato intercropping system. Zhang, Enhe,Huang, Gaobao,Zhang, Lijun,Wang, Gang,Zhang, Lijun,He, Chunyu,Zhang, Bo,Wang, Qi,Qiang, Shengjun. 2011

[13]Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Zhang, F. S.,Marschner, P.,Fan, F. L.,Gao, H. M.,Bao, X. G.,Sun, J. H.,Li, L.. 2007

[14]Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Li, Long,Li, Shu-Min,Sun, Jian-Hao,Zhou, Li-Li,Bao, Xing-Guo,Zhang, Hong-Gang,Zhang, Fu-Suo.

[15]High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Liu, Yi-Xiang,Zhang, Wei-Ping,Li, Xiao-Fei,Christie, Peter,Li, Long,Sun, Jian-Hao.

[16]Intercropping enhances soil carbon and nitrogen. Cong, Wen-Feng,Li, Long,Zhang, Fu-Suo,Cong, Wen-Feng,van der Werf, Wopke,Hoffland, Ellis,Six, Johan,Sun, Jian-Hao,Bao, Xing-Guo.

[17]Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Wang, Zhi-gang,Li, Xiao-fei,Jin, Xin,Christie, Peter,Li, Long,Bao, Xing-guo,Zhao, Jian-hua,Sun, Jian-hao.

[18]Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Marschner, P.,Li, L.,Bao, X. G.,Sun, J. H.,Zhang, F. S.. 2007

[19]Comparison of dynamic changes of endogenous hormones between calli derived from mature and immature embryos of maize. Wang, Henning,Zhang, Jinwen,Jia, Xiaoxia,Liang, Huiguang,Kong, Weiping,Zhang, Xinhui. 2011

[20]Grain yield and water use in a long-term fertilization trial in Northwest China. Fan, TL,Wang, SY,Tang, XM,Luo, JJ,Stewart, BA,Gao, YF. 2005

作者其他论文 更多>>